Development of Green Propellants - HPGP Technology

Mathias Persson, President, ECAPS

2011 International Workshop on Environment and Alternative Energy ESTEC, November 15, 2011

ECAPS

- Is a fully owned subsidiary to SSC (Swedish Space Corporation)
- Main objectives: To develop, manufacture and market reduced hazard propulsion systems
- Long term vision: "By innovations and product development increase accessibility to space by safe and cost effective systems"
- Supported by ESA, SNSB and the owner SSC through all development programs

Products

1N HPGP Thruster (TRL7)
5N HPGP Thruster (TRL4/5)
22N HPGP Thruster (TRL4/5)

LMP-103S Liquid Monopropellant

HPGP Propulsion Systems

ADN in Liquid Monopropellants

Invented in 1997 by the Swedish Space Corporation (SSC) and the Swedish Defence Research Agency (FOI).

Liquid mono-Propellant

("a pre-mixed Bipropellant")

Careful selection of solvent and fuels makes the ADN-solution much less sensitive than pure (solid) ADN.

High Performance Green Propulsion - HPGP

A space proven alternative to Hydrazine propulsion giving:

- Better Performance and Characteristics
 - Storable Liquid monopropellant
 - High Specific and Density Impulse
 - Good pulse performance

Higher Safety

- Low Sensitivity
- Low Toxicity
- Non Carcinogenic
- Environmentally Benign

Lower overall mission cost

- Easy to handle and transport
- Low cost for fuelling
- Compatible with available COTS

Propellant Development Time-line

ECAPS Locations

- Rocket engine development and manufacturing at ECAPS in Solna
- Propellant production and testing at EURECO Bofors in Karlskoga
- Rocket engine and propellant testing at FOI in Tumba

Solna - Thruster Manufacturing, Assembly & Test

Thruster Assembly

Vibration Test

Hot Firing Test

Sun Simulation Test

Shock Test

PRISMA Flight Qualified

Solna - System Manufacturing, Assembly & Test

Tube bending

X-ray

Orbital welding

Pressure and Leak Check

Precision Cleaning

HPGP Flight System

Karlskoga – Propellant Manufacturing

- EURENCO Bofors is the largest producer of AND
- Space applications require high purity propellants, i.e., > 99.999 % purity * ("standard" ADN is ~99.6 %).
- An ADN purification process has been developed by EURENCO Bofors and ECAPS, which fulfils the high purity requirements.
- A pilot-plant-scale purification system is operational, owned by ECAPS and operated EURENCO Bofors.

Grindsjön - Hot-Firing Test Facility

Test Stand 1 0.2 – 5 N Test Stand 2 5 - 22 N (500 N*)

2 Stage Roots Blower/Pump Ambient ≤ 1 mbar @ 1N (i.e 0.5 g/s) Ambient ≤ 5 mbar @ 5N (i.e 2.5 g/s) Test Duration @ 1 N up to 5 hours

3 Stage Air Ejector Pump Ambient ≤ 5 mbar @ 200 N Test duration @ 22 N up to 1 hour (Test duration @ 500 N up to 15 minutes)*

LMP-103S

ADN-Based Liquid Storable "Green" Monopropellant

 N_2

 H_2O

Higher performance:

- lsp >6%
- Density Impulse >30%

Reduced personal and environmental hazards:

- Low sensitivity
- Low toxicity
- Non carcinogenic

Simpler to transport and handle:

- SCAPE not required
- Approved for air transportation

Exhaust species

HPGP / LMP-103S Technology

Propellant Transport

- LMP-103S is approved for transport by land, sea and air according to UN 1.4S
- LMP-103S has been transported on a commercial passenger airplane according to UN 1.4S (AWB 11-7-23910 795) and as air cargo with the PRISMA satellites to the launch site

1 N HPGP Thruster

HPGP Propulsion System

PRISMA Flight Demonstration

PRISMA Launch Campaign

Spacecraft Loading

PRISMA/PICARD Launch on Dnepr from Yasny launch base June 15th, 2010

1 N HPGP Thruster

On Ground and In-space Fired Sequences $Duty\ Factor\ vs\ T_{on}$

In-Space Performance Results

1 N HPGP Demonstration Life

1 N HPGP Demonstrated Life		
	On Ground	In Space
Propellant Storage Life	> 5.5 years	> 1 year
(In a propulsion system)	(ongoing)	(ongoing)
Number of fired pulses	60,000	> 50,000*
Number of fired sequences	1500	> 363*
Longest continuous firing	1.5 hours	> 60 s, (75 s)
Accumulated firing time	24 hours	~ 3 hours*
Propellant throughput	25 kg	> 3.5 kg*
Total Impulse	50 kNs	

*Performed with two trusters

HPGP Back-to-Back Comparison with Hydrazine

Specific and Density Impulse Comparison		
Steady-State Firing:	6-12 % Higher Isp than hydrazine	
I _{sp} for last 10 s of 60 s firings	30-39 % Higher Density Impulse than hydrazine	
Single Pulse Firing: T _{on} : 50 ms - 60 s	10-20 % Higher Isp than hydrazine	
	36-49 % Higher Density Impulse than hydrazine	
Pulse Mode Firing: T _{on} : 50 ms – 30 s	0-12 % Higher Isp than hydrazine	
Duty Factor: 0.1 – 97%	24-39 % Higher Density Impulse than hydrazine	

Mission average improvement with HPGP compared to hydrazine:

- Isp + 8%
- Density Impulse + 32%

Conclusions from PRISMA mission

- All mission objectives for the HPGP in-space demonstration have been successfully achieved, thus TRL 7 has been met
- The PRISMA launch campaign demonstrated significant reduced risk, lead time and cost using HPGP
- The PRISMA mission is continuing

Scaling to Higher Thrust Levels

50 N HPGP Thruster in Thrust Balance

50N HPGP Thruster in Hot Firing Test Chamber

PRISMA paves the way for HPGP

ECAPS is a world leader in environmentally benign Space Propulsion

ECAPS is represented by ATK and MOOG for marketing and sales in the US.

Thank you!